Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics.

نویسندگان

  • Guizhi Zhu
  • Jing Zheng
  • Erqun Song
  • Michael Donovan
  • Kejing Zhang
  • Chen Liu
  • Weihong Tan
چکیده

Nanotechnology has allowed the construction of various nanostructures for applications, including biomedicine. However, a simple target-specific, economical, and biocompatible drug delivery platform with high maximum tolerated doses is still in demand. Here, we report aptamer-tethered DNA nanotrains (aptNTrs) as carriers for targeted drug transport in cancer therapy. Long aptNTrs were self-assembled from only two short DNA upon initiation by modified aptamers, which worked like locomotives guiding nanotrains toward target cancer cells. Meanwhile, tandem "boxcars" served as carriers with high payload capacity of drugs that were transported to target cells and induced selective cytotoxicity. aptNTrs enhanced maximum tolerated dose in nontarget cells. Potent antitumor efficacy and reduced side effects of drugs delivered by biocompatible aptNTrs were demonstrated in a mouse xenograft tumor model. Moreover, fluorophores on nanotrains and drug fluorescence dequenching upon release allowed intracellular signaling of nanotrains and drugs. These results make aptNTrs a promising targeted drug transport platform for cancer theranostics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‘Nanotrain’ for targeted drug transport of cancer theranostics

ISSN 1743-5889 10.2217/NNM.13.130 © 2013 Future Medicine Ltd Nanomedicine (2013) 8(9), 1369–1371 1369 Chemotherapy drugs lack specificity and induce cytotoxicity in both cancerous and healthy cells, resulting in limited maximum tolerated doses and reduced therapeutic efficacy. Studies have shown the use of aptamers as specific recognition elements for targeted transport of chemotherapeutic drug...

متن کامل

A Controllable Aptamer-Based Self-Assembled DNA Dendrimer for High Affinity Targeting, Bioimaging and Drug Delivery

Targeted drug delivery is important in cancer therapy to decrease the systemic toxicity resulting from nonspecific drug distribution and to enhance drug delivery efficiency. We have developed an aptamer-based DNA dendritic nanostructure as a multifunctional vehicle for targeted cancer cell imaging and drug delivery. The multifunctional DNA dendrimer is constructed from functional Y-shaped build...

متن کامل

Doxorubicin Loaded DNA Aptamer Linked Myristilated Chitosan Nanogel for Targeted Drug Delivery to Prostate Cancer

Recently, specific attention has been paid to aptamers, short DNA or RNA, as a tool for cancer diagnosis and therapy. In the present study MCS nanogels were prepared by Myristate: chitosan at 1:9 ratio and were characterized by several techniques. A selected ssDNA aptamer(Apt) capable of detecting LNCaP cells was linked to Myristilated chitosan nanogels (Apt-MCS) by glutaraldehyde and loaded wi...

متن کامل

Doxorubicin Loaded DNA Aptamer Linked Myristilated Chitosan Nanogel for Targeted Drug Delivery to Prostate Cancer

Recently, specific attention has been paid to aptamers, short DNA or RNA, as a tool for cancer diagnosis and therapy. In the present study MCS nanogels were prepared by Myristate: chitosan at 1:9 ratio and were characterized by several techniques. A selected ssDNA aptamer(Apt) capable of detecting LNCaP cells was linked to Myristilated chitosan nanogels (Apt-MCS) by glutaraldehyde and loaded wi...

متن کامل

RNA nanotechnology breakthrough for targeted release of RNA-based drugs using cell-based aptamers

Nucleic acids play different roles besides storing information and proteins coding. For example, single-stranded nucleic acids can fold into complicated structures with capability of molecular detection, catalyzing bioreactions and therapy. The development of RNA-based therapies has been rapidly progressed in the recent years. RNA aptamers are biomolecules with a size of 10 to 50 nm that can be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 20  شماره 

صفحات  -

تاریخ انتشار 2013